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Epistemic Dependence & Understanding:
Reformulating through Symmetry
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ABSTRACT

Science frequently gives us multiple, compatible ways of solving the same problem or formu-
lating the same theory. These compatible formulations change our understanding of the world,
despite providing the same explanations. According to what I call ‘conceptualism’, reformu-
lations change our understanding by clarifying the epistemic structure of theories. I illustrate
conceptualism by analyzing a typical example of symmetry-based reformulation in chemical
physics. This case study poses a problem for ‘explanationism’, the rival thesis that differences
in understanding require ontic explanatory differences. To defend conceptualism, I consider
how prominent accounts of explanation might accommodate this case study. I argue that either
they do not succeed, or they generate a skeptical challenge.

1 Introduction
2 Explanationism
3 Conceptualism
4 A Case Study from Crystal Field Theory

4.1 Three approaches to crystal field theory
4.2 A problem for explanationism
4.3 Illustrating conceptualism

5 Is Conceptualism Redundant?
5.1 Skow’s account of reasons-why
5.2 Woodward and Hitchcock’s manipulationism

6 Explanatory Exclusion
6.1 Strevens’ kairetic account
6.2 Lange’s distinctively mathematical explanations

7 Conclusion
A Appendix

A.1 The elementary approach
A.2 The non-group-theoretic approach
A.3 The group-theoretic approach

1 Introduction

Throughout science and engineering, we often have multiple, compatible methods for
answering explanatory why-questions. Paradigmatic examples include various formu-
lations of classical mechanics and quantum mechanics, along with common variable
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changes such as Laplace and Fourier transforms. In physics and chemistry, ‘dispens-
able symmetry arguments’ provide another class of examples. In such cases, we can
use a symmetry argument, but we do not have to: alternative elementary methods suf-
fice. Both these elementary and symmetry-based methods answer many of the same
explanatory why-questions, while agreeing on the way the world is. In all of these
cases, compatible formulations provide—in some sense—the same explanation, des-
pite formulating these explanations very differently. These differences in formulation
lead to objective and non-pragmatic differences in understanding. For short, I will call
these kinds of differences in understanding ‘intellectual differences’. This essay aims
to provide a positive account of how compatible formulations generate intellectual dif-
ferences, focusing on dispensable symmetry arguments in particular.

Compatible formulations pose a problem for ‘explanationism’, a position commonly
defended or assumed by accounts of scientific explanation.1 Explanationism claims
that intellectual differences require differences in ontic explanatory information, such
as nomological or causal structure. According to explanationism, a theory or problem-
solving procedure provides an objective difference in understanding if and only if it
represents a corresponding ontic difference. Against explanationism, I will argue that
compatible formulations provide intellectual differences without any concomitant ontic
differences. They thereby pose a counterexample to explanationism.

If not through explanatory differences, how can we account for the intellectual dif-
ferences that compatible formulations provide? To answer this question, I will introduce
and defend ‘conceptualism’, an account of scientific understanding that addresses the
deficiencies of explanationism.2 Conceptualism accommodates intellectual differences
between reformulations by appealing to differences in their epistemic or organizational
structure. Concretely, this structure is constituted by what I will call ‘epistemic depend-
ence relations’ (EDRs). These characterize what we need to know or what suffices to
know to solve a problem, including answering why-questions. I will argue that differ-
ences in epistemic dependence relations generate the striking intellectual differences
we see between compatible formulations of the same theory.

I begin in Section 2 by clarifying my target: explanationism. Remaining neutral
on whether explanations are best understood ‘ontically’ or ‘epistemically’, the thrust of
my challenge will be that ontic differences alone cannot account for all the myriad
intellectual differences we see in science. Section 3 articulates conceptualism as a
framework for analyzing scientific understanding. I illustrate conceptualism with some
brief examples. Section 4 proceeds to develop my account through one of the simplest
yet sufficiently rich examples of dispensable symmetry arguments, taken from crys-
tal field theory—an idealized model in chemical physics and inorganic chemistry. I
introduce three compatible formulations of crystal field theory: the elementary, non-
group-theoretic, and group-theoretic approaches. Each approach references the same
ontic explanatory features, while nonetheless leading to different understandings of the

1 20th century proponents include Hempel ([1965], pp. 337, 488), Railton ([1981], pp. 247–8), and
Salmon ([1989], pp. 120, 161). 21st-century proponents include Woodward ([2003], pp. 86, 223)
and Strevens ([2008], pp. 117, 154). Khalifa ([2012], [2017]) has defended a particularly thorough
characterization of explanationism.

2 I call this view ‘conceptualism’ to emphasize the role that concepts play in theory reformulation and
understanding. By ‘concepts’, I intend what Kenneth Manders ([2008], [unpublished]) calls ‘ex-
pressive means’. These include the mathematical, linguistic, diagrammatic, and notational resources
we use to express theories. Despite some interesting analogies, I do not intend to endorse scholastic
or early modern ‘conceptualism’ about universals.
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phenomena. These formulations thereby provide a counterexample to explanationism.
In Sections 5 and 6, I consider and rebut two objections against conceptualism. The
first argues that existing accounts of explanation can easily accommodate the intellec-
tual differences I identify. Considering two leading accounts of causal explanation, I
show that this is not the case. The second objection argues that what I am calling cases
of the same explanation are in fact different explanations and can be accommodated as
such. I argue that this response faces a skeptical challenge that conceptualism avoids.

2 Explanationism

Recent accounts of understanding sometimes allege that traditional theories of explan-
ation neglected scientific understanding (de Regt [2017], p. 16). Regardless of the
fairness of this charge, both proponents and opponents of traditional accounts of ex-
planation agree on a central schema connecting understanding with explanation. Ac-
cording to this ‘received view of understanding’, understanding why a phenomenon
occurs consists in grasping an explanation of that phenomenon.3 By tightly connect-
ing understanding-why with explanation, the received view transforms even traditional
accounts of scientific explanation into a minimal account of scientific understanding.

The received view suggests that there are only two possible sources for differences
in understanding why a phenomenon occurs. These correspond to pragmatic vs. non-
pragmatic differences in understanding-why, respectively. First, on the pragmatic side,
these differences can spring from variation in how agents grasp explanations. Most
recent accounts of scientific understanding have focused their attention here, arguing
that understanding involves special skills or abilities for grasping explanations.4 This
feature of understanding-why is inherently pragmatic because it depends on features
of agents. It is ideally intersubjective but often idiosyncratic.5 Secondly, on the non-
pragmatic side, differences in understanding can arise from grasping different explan-
atory information, such as different states of affairs or other ontic features of reality.
Differences in ontic explanatory features straightforwardly provide objective and non-
pragmatic differences in understanding. Insofar as traditional accounts of explanation
have been interested in scientific understanding, it has been in this second sense.

This traditional focus leads to ‘explanationism’, which claims that all objective and
non-pragmatic differences in understanding arise from differences in the ontological
content represented or picked out by explanations.6 Phrased as a biconditional, ex-

3 For statements of this position see Strevens ([2013]), Khalifa ([2017], pp. 16–8), de Regt ([2017],
p. 23), and Potochnik ([2017], pp. 123–4).

4 See, for instance, de Regt and Dieks ([2005]), de Regt, Leonelli et al. ([2009]), Grimm ([2010]) and
Hills ([2016]). Along with scientists’ cognitive abilities, Potochnik’s account of understanding relies
on scientists’ research interests, background information, space-time location, and psychological
characteristics ([2017], p. 100).

5 de Regt ([2017], p. 44) argues that the pragmatic nature of skills does not entail that the resulting
understanding is problematically subjective. Potochnik makes a similar claim regarding her account
of understanding, where ‘features of scientists themselves, including their interests and intentions,
influence what generates understanding’ ([2015b], p. 74). However, these pragmatic features are
certainly less objective than explanatory differences in understanding and the epistemic differences
I consider in Section 3.

6 What I am calling ‘explanationism’ might more precisely be called ‘ontic explanationism’. It is
distinct from weaker positions seeking to reduce intellectual differences to both ontic and non-ontic
features of explanation.
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planationism contends that an intellectually significant difference occurs if and only if
there is a corresponding ontic explanatory difference. Such ontic differences comprise
differences in the worldly features responsible for the phenomenon of interest, such as
laws of nature, causes, mechanisms, grounds, and difference-makers. As already noted,
explanations that appeal to different ontic features straightforwardly lead to intellectual
differences; this establishes one direction of the explanationist biconditional. Many ac-
counts of explanation also treat such ontic differences as necessary for an intellectual
difference, establishing the second direction. For instance, according to Hempel, ‘all
scientific explanation [. . . ] seeks to provide a systematic understanding of empirical
phenomena by showing that they fit into a nomic nexus’ ([1965], p. 488). Similarly,
Trout argues that the only kind of understanding that we should focus on is an object-
ive kind coming from explanations, namely ‘the state produced, and only produced,
by grasping a true explanation’ ([2007], pp. 584–5). Strevens defends this same claim
([2008], p. 3), arguing further that ‘science understands a phenomenon just in case
it can provide a standalone explanation of the phenomenon’, namely ‘an explanation
that is complete, that is not missing any of its parts’ ([2008], p. 117). Woodward also
frequently makes remarks that are congenial to explanationism, such as his claim that
‘once we have been given information about the complete patterns of counterfactual
dependence [. . . ] it appears that nothing has been left out that is relevant to under-
standing why matters transpired as they did’ ([2003], p. 86). On this traditional con-
ception, non-ontic differences—such as differences in the mode of presentation of an
explanation—are seen as merely pragmatic.

As a thesis about the relationship between understanding and explanation, explan-
ationism is not itself an account of explanation. As such, there are a great variety of
explanationists, distinguished by their preferred accounts of scientific explanation. This
includes defenders of both ‘ontic’ and ‘epistemic’ conceptions of explanation. As char-
acterized by Salmon, the ‘ontic conception’ views explanations as objective and non-
pragmatic features of the world that exist independently of explanatory arguments or
discoveries ([1989], p. 133). In this ontic sense, an explanation is ‘a relation among fea-
tures of the world’, namely the features ‘that cause, produce, or are otherwise respons-
ible for the phenomena we seek to explain’ (Craver [2014], pp. 30, 36). In contrast,
the ‘epistemic conception’ of explanation focuses on the representation of these ontic
features. The epistemic conception privileges ‘explanation-texts’ or ‘explanatory argu-
ments’ as being explanations proper. Nevertheless, as Craver ([2014]) has argued, these
explanation-texts must still refer to ontic explanatory information to discharge their
central normative duty of distinguishing explanations from non-explanations. Thus, at
least for my purposes, the debate between epistemic and ontic accounts is merely ter-
minological.7 For instance, the three approaches to crystal field theory discussed in Sec-
tion 4 provide the same explanation in an ontic sense, but of course they each provide a
different explanation-text (and hence a different epistemic explanation). What matters
is that they agree on the ontic explanatory information, and it is immaterial if we char-
acterize this information within an ontic vs. an epistemic conception of explanation.
Hence, I intend to argue against any account of explanation that takes grasping ontic
explanatory information as necessary and sufficient for objective and non-pragmatic
differences in understanding.

Pragmatic accounts of understanding also aim to challenge explanationism, but they
7 Even defenders of the epistemic conception, such as Bokulich, agree that ‘ontic constraints still play

a central role’ in explanation ([2018], p. 794).
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are dialectically less effective for this purpose. Following Elgin ([2004]), Potochnik
([2017], p. 95) rejects the traditional factivity assumption that understanding requires
truth, requiring instead that the relevant claims be ‘true enough’. According to Po-
tochnik, whether a scientific claim is true enough to provide understanding depends
partly on pragmatic considerations, including ‘the purpose of the research to which it
contributes’ ([2017], p. 96). Ultimately, Potochnik extends these pragmatic consid-
erations to explanation, arguing that the audience ‘helps determine the nature of the
explanatory facts, that is, the ontic explanation’ ([2017], p. 128).8 However, it is un-
likely that explanationists would willingly grant the assumptions of a framework where
ontic explanation depends on features of agents. In general, explanationists are simply
less interested in more subjective, pragmatic conceptions of explanation or understand-
ing.9 Additionally, Khalifa ([2012]) has noted that accounts of explanation already
implicitly involve another pragmatic dimension of understanding, namely the use of
skills. Obviously, agents require some cognitive abilities to construct and grasp explan-
ations. For instance, Woodward’s manipulationist account of causal explanation impli-
citly references the relevant skills for constructing and analyzing what-if-things-had-
been-different questions. Thus, explanationism already seems compatible with skills-
based accounts of understanding. In contrast, I intend to rebut explanationism on its
own terms by privileging its preferred sense of understanding. I will argue in Sec-
tion 3 that explanationism is incomplete even with regards to these objective and non-
pragmatic differences in understanding. Whereas pragmatic accounts of understanding
criticize explanationism for reasons it might not find compelling, conceptualism points
out a shortcoming that even explanationists should regard as important.

3 Conceptualism

The chief shortcoming of explanationism is its failure to accommodate a common oc-
currence in science and engineering. In these disciplines, we often have at hand multiple
compatible formulations of the same underlying explanatory features. Explanationism
does not account for how compatible formulations sometimes provide different under-
standings, despite referencing the same explanatory information. To address this over-
sight, I will propose an alternative account of understanding: conceptualism. Conceptu-
alism agrees with explanationism that ontic explanatory differences suffice for intellec-
tual differences. It is clearly intellectually significant to find out that some ontic feature
plays an explanatory role. However, against explanationism, conceptualism holds that
these explanatory differences are not necessary for intellectual differences. Instead,
certain kinds of differences in the organization of explanatory information are intellec-
tually significant.10 This kind of understanding has been neglected by both accounts of

8 Morrison ([2000], pp. 28–9) makes a similar claim that the explanatory power or acceptability of an
explanation depends partly on the scientific community or even individual scientists.

9 Hempel ([1965], pp. 425–32) discusses pragmatic features of explanation at length, noting that al-
though they are important, they can be separated from his non-pragmatic account of explanation and
understanding. He remarks that ‘to propound those [non-pragmatic] models is therefore neither to
deny the pragmatic “dimension” of explanation nor to belittle its importance’ ([1965], p. 426).

10 In a footnote, Railton ([1981], p. 256) notes that not only the content of an explanation but also ‘the
organization of its components’ can be important. Salmon ([1989], p. 131) makes a similar point.
However, whereas Railton and Salmon both view this organizational information as ‘explanatory
information’, conceptualism denies that it necessarily matters for explanation, a claim I defend in
Section 5.
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scientific explanation and recent accounts of understanding, the former owing to their
focus on ontological features, the latter owing to their focus on pragmatic features of
agents.

The intellectual differences that motivate conceptualism arise whenever we have
two or more compatible ways of formulating a theory or solving a problem. By ‘com-
patible’, I mean that the formulations do not disagree about the way the world is: they
are logically and physically consistent. Believing one does not preclude us from believ-
ing the others; we can consistently believe them all.11 Examples include both various
formulations of classical mechanics (Lagrangian, Hamiltonian, and Hamilton-Jacobi)
and quantum mechanics (wave mechanics, matrix mechanics, path integrals, and dens-
ity matrices). Within a shared domain of problems, compatible formulations do not
present ontic explanatory differences. Nevertheless, each formulation provides a dis-
tinctive way of understanding the world and in particular of understanding why phe-
nomena occur. Dispensable symmetry arguments in physics and chemistry provide
another kind of compatible formulation. In these cases, we have an elementary formu-
lation that eschews symmetries along with at least one formulation that takes advant-
age of symmetry (possibly through the mathematical language of group representation
theory). Both the elementary and the symmetry-based approaches provide different
understandings of the same phenomena, despite describing the same ontic explanatory
information. Section 4 illustrates this moral in detail. Other examples of dispensable
symmetry arguments include the Wigner–Eckart matrix element theorem, symmetry-
based explanations of hydrogen’s energy spectrum, and selection rules in spectroscopy.

What constitutes the non-explanatory intellectual differences that compatible for-
mulations provide? Conceptualism locates these differences in how formulations or-
ganize explanatory information, rather than in that information itself. Different for-
mulations package the same ontic explanation within dramatically different epistemic
structures. Conceptualism formalizes these organizational differences through the no-
tion of ‘epistemic dependence relations’ (EDRs). Epistemic dependence relations char-
acterize what we need to know or what suffices to know in order to solve particular
problems, such as answering explanatory why-questions. The relata related by an EDR
are the inputs needed (or sufficient) for obtaining knowledge of a given output. In the
context of explanations, the inputs are typically explanans, with the output being a given
explanandum.

EDRs are useful because they succinctly characterize organizational differences
between formulations. To illustrate this, consider a toy example from arithmetic: cal-
culating the absolute value of the product of two integers, |xy|.12 One formulation of
this problem involves first calculating x times y and then taking the absolute value. This
involves knowing the signs of both integers. Alternatively, one could reformulate this
problem by recognizing that the absolute value of a product equals the product of the
absolute values: |xy| = |x| |y|. In this formulation, we don’t need to know the sign of
each integer. It suffices to know their absolute values. Hence, this reformulation uses
different epistemic dependence relations to solve the problem. Conceptualism claims
that in cases like this, we not only solve the problem differently, we also gain a different

11 Bokulich ([2013]) considers how different models of geomorphology can produce different under-
standing of the same phenomena, but these models are competing, rather than compatible. Similarly,
Potochnik ([2015b], p. 77) discusses competing approaches to both human sexuality and population
biology.

12 I thank Dave Baker for suggesting this example.
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understanding of the solution.
Section 4 will show how dispensable symmetry arguments affect understanding

through two general kinds of epistemic dependence relations: modularization and uni-
fication. ‘Modularization’ occurs when a formulation breaks a problem or a why-
question into separately treatable sub-problems. Modularizing a problem shows that
some parts of it can be treated independently of other parts. ‘Unification’ occurs when
a single derivation and its solution applies to a family of different systems that all dis-
play shared behaviour. For instance, organizing systems into symmetry-based families
unifies them. Noticing such epistemic dependence relations changes our understand-
ing of a given phenomenon by clarifying what suffices or is necessary to understand
it. Furthermore, this kind of intellectual difference does not rely on any particular de-
tails about agents, skills, or capacities. We can thereby abstract away agents, analyzing
EDRs as objective, agent-independent features of a theory formulation.13

Compatible formulations pose a problem for explanationism only if these intel-
lectual differences concern understanding-why, rather than some other kind of under-
standing. Hence, it is incumbent upon conceptualism to argue that different EDRs
lead to differences in understanding-why. To see this, note first that reformulating a
theory changes our understanding of that theory. Moreover, it is through theories or
problem-solving procedures that we answer explanatory why-questions and thereby ac-
quire understanding-why. Hence, by changing our understanding of the theory used to
provide an explanation, EDRs affect the resulting understanding-why. Indeed, some
epistemologists have argued that understanding-why deals directly with grasping the
relations that hold between various propositions in a subject matter. In particular, this
involves situating a proposition within a broader theory or methodology. For instance,
Zagzebski has argued that understanding ‘involves seeing the relation of parts to other
parts and perhaps even the relation of part to a whole’ ([2001], p. 241). Similarly,
Elgin has argued that understanding a proposition is a matter of integrating it within
a coherent and comprehensive body of knowledge ([2007]). She notes in particular
that having ‘more non-trivial inferential connections between propositions’ constitutes
greater understanding ([2007], p. 36). Articulating EDRs certainly clarifies these infer-
ential connections. For at least these reasons, epistemic dependence relations matter for
understanding-why.14

Of course, not all differences in the organization of explanatory information are in-
tellectually significant. Many differences are merely convenient, conventional, or other-
wise pragmatic. In such cases, the alternative formulations constitute ‘trivial notational
variants’. For instance, many scientists and engineers prefer working in right-handed
rather than left-handed Cartesian coordinates systems. This difference in handedness
is merely convenient rather than intellectually significant. We do not acquire an ob-
jectively different understanding of a problem by reformulating it in a mirror-image
coordinate system. Similarly, many physicists prefer using Einstein summation con-
vention for expressing equations, but laboriously writing out the suppressed summa-
tion symbols would not lead to objective differences in understanding. Conceptualism
distinguishes these trivial notational variants from ‘nontrivial reformulations’, where

13 This non-agentive approach to understanding captures one facet of understanding that does not de-
pend on agents, allowing agent-dependent features to be subsequently added. Ultimately, psycholo-
gical ‘grasping’ should be treated naturalistically, sensitive to the concerns of Trout ([2007]).

14 Hunt ([forthcoming]) further defends this claim, along with providing an independent argument
against explanationism by appealing to theoretically equivalent formulations.
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only the latter provide intellectually significant differences. This distinction calls for
a criterion: on what basis can we separate cases of reformulations into intellectually
trivial vs. nontrivial formulations? Conceptualism proposes that differences in EDRs
are sufficient for generating nontrivial reformulations.15 For as we have seen, different
epistemic dependence relations lead to differences in understanding-why. In contrast,
since trivial notational variants provide the same EDRs, they do not provide objective
and non-pragmatic differences in understanding.

Having motivated the need for a positive account of compatible formulations, the
rest of this essay defends conceptualism by applying it to a paradigmatic instance of re-
formulation. The use of symmetry arguments in crystal field theory shows how reformu-
lating a problem-solving procedure can lead to differences in understanding phenom-
ena without requiring explanatory differences. My account of how symmetry arguments
contribute to understanding involves disentangling three compatible formulations. First,
there are ‘elementary approaches’, which proceed on a case-by-case basis without ap-
pealing to symmetry. Often in physics and chemistry, elementary approaches involve
a brute-force application of perturbation theory to each system of interest. Secondly,
in ‘non-group-theoretic approaches’, we make the system’s symmetries explicit but
without using an abstract language for symmetry. Finally, ‘group-theoretic approaches’
take advantage of symmetry by using the more sophisticated mathematics of group rep-
resentation theory. In Section 4.3, I show how at each stage in this process of reformula-
tion, we acquire different EDRs, leading to different understandings of the phenomena.
Since these intellectual differences do not arise from explanatory differences, they pose
a counterexample to explanationism.

4 A Case Study from Crystal Field Theory

Crystal field theory provides an idealized model for describing properties of coordina-
tion complexes. These consist of a positively charged metal ion surrounded by negat-
ively charged or polarized species known as ‘ligands’. Figure 1 shows two examples:
nickel(II) hexahydrate and nickel(II) hexammine. Both complexes comprise a Ni2+ ion
bound to six ligands occupying the vertices of an octahedron (see Figure A.1). Often,
the colour of coordination complexes changes according to the ligands bound to the
metal ion. Whereas nickel(II) hexahydrate is green, nickel(II) hexammine is purple.
Chemists use crystal field theory to understand these differences in colour, along with
differences in thermodynamic and magnetic properties (Figgis and Hitchman [2000]).

To explain these properties, chemists focus on how the valence electrons of the
metal ion change when surrounded by ligands. For instance, an isolated Ni2+ ion has
eight valence electrons that occupy five energetically ‘degenerate’ orbitals, meaning
that they have the same energy (depicted by the left side of Figure 2).16 Surrounding
Ni2+ with ligands breaks this degeneracy, causing previously degenerate orbitals to
‘split’ into new energy levels with new degeneracies. Crystal field theory describes this
splitting phenomenon by treating ligands as point dipoles that create an electrostatic
‘crystal’ field, perturbing the energy levels of the metal ion.17 In the case of nickel(II)

15 Indeed, it is plausible that a difference in epistemic dependence relations is necessary for an intel-
lectually significant difference. It is difficult to imagine that two formulations could be significantly
different without providing at least one different epistemic dependence relation.

16 Atomic orbitals are one-electron wavefunctions used to approximate the overall state of an atom or
molecule.
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Figure 1: Octahedral coordination complexes

hexahydrate, the fivefold degenerate valence orbitals split into two new levels that are
two-fold and three-fold degenerate, shown in Figure 2. The difference between these
energy levels is denoted ‘∆O’. Electronic transitions between these levels help explain
the characteristic colours of many metal complexes.

5 orbitals ∆O

Perturbed
Energy Levels

Unperturbed
Energy Levels

Figure 2: Splitting of valence orbitals in an octahedral crystal field

Crystal field theory solves three connected problems about electronic structure, each
posing its own why-question. The ‘splitting problem’ is to determine how many new
energy levels form from a previously degenerate energy level. The ‘degeneracy prob-
lem’ is to determine how many orbitals constitute each new level, i.e. its degener-
acy. Finally, chemists estimate the energy difference ∆O by finding the eigenvalues
of each new energy level, giving rise to the ‘eigenvalue problem’. For brevity, I will
refer to these three problems collectively as ‘the crystal field theory problem’. Sec-
tion 4.1 begins by sketching three different compatible approaches to explaining this
phenomenon. Armed with these approaches, Section 4.2 develops them as a counter-
example to explanationism. They provide different ways of understanding crystal field
theory without concomitant explanatory differences. Finally, in Section 4.3, I show

17 Crystal field theory idealizes interactions as purely ionic, neglecting chemical bonds between the
metal ion and ligands. It underlies more sophisticated models such as ligand field theory (Cotton
[1990], p. 254). For simplicity, I suppress additional philosophical issues pertaining to idealization,
since the same questions about reformulations arise outside this context.
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how conceptualism easily accommodates the intellectually significant features of this
case study. The group-theoretic approach modularizes and unifies crystal field theory
by providing distinctive epistemic dependence relations. Throughout, I will focus on
nickel(II) hexahydrate as a concrete example, although my discussion applies more
generally.

4.1 Three approaches to crystal field theory
The first approach to crystal field theory is ‘elementary’ in the sense that it makes no
explicit appeal to symmetry properties of the molecule. Instead, it relies entirely on per-
turbation theory, approximating the eigenvalues of the coordination complex relative to
those of the unperturbed, free metal ion. We begin by measuring the electrostatic poten-
tial, representing it as a perturbation operator H ′. The eigenvalues of this perturbation
operator provide a first-order correction to the known energy states of the free metal ion.
We calculate these eigenvalues by solving a ‘secular equation’ (Equation A.1), which
functions as the relevant law-like statement for this explanation. With the eigenvalues
in hand, the splitting and degeneracy follow immediately. The number of distinct ei-
genvalues and their degeneracies corresponds to the number of new energy levels and
their degeneracies. For nickel(II) hexahydrate, we obtain two distinct eigenvalues that
are three-fold and two-fold degenerate. Figure 3a represents the schematic structure of
this approach.18

The second approach relies on the same schematic structure: it uses perturba-
tion theory to calculate the eigenvalues, from which the energy-level structure fol-
lows. However, we now take explicit advantage of symmetry, although without using
the formal apparatus of group representation theory. Hence, I will refer to this first
symmetry-based formulation as the ‘non-group-theoretic approach’.19 Unlike the ele-
mentary approach, we begin by characterizing the electrostatic potential in terms of the
symmetry of the coordination complex. For nickel(II) hexahydrate, the resulting poten-
tial (Equation A.2) applies to any coordination complex with six ligands at the vertices
of an octahedron. We then follow the same procedure as the elementary approach but
now using this symmetry-based potential. Solving the secular equation leads to two
distinct eigenvalues: λ1 = −2

5∆O (three-fold degenerate) and λ2 = 3
5∆O (two-fold de-

generate), expressed in terms of their energy difference ∆O. As in the elementary ap-
proach, the splitting and degeneracy follow immediately from these eigenvalues. The
two distinct eigenvalues and their degeneracies entail that two new energy levels form
that are three-fold and two-fold degenerate.

In the third approach, we take advantage of not only symmetry but also the formal
apparatus of group (representation) theory. This ‘group-theoretic approach’ extens-
ively reformulates the crystal field theory problem, leading to a dramatically different
organizational structure, shown in Figure 3b.20 Rather than deduce the splitting and
degeneracy from the eigenvalues (as in the other two approaches), we now determine
them without solving a secular equation. To begin, we identify the symmetry groups
of both the free metal ion and the coordination complex. An unperturbed metal ion,

18 See Appendix A for a more detailed account of each formulation.
19 See Dunn et al. ([1965], pp. 9–16) and Figgis and Hitchman ([2000], pp. 30–8) for detailed applica-

tions of this approach.
20 Adopting an abbreviation common throughout physics and chemistry, ‘group theory’ will typically

refer more precisely to ‘group representation theory’. See Appendix A.3 for details.
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such as Ni2+, is invariant under arbitrary rotations, so its symmetry group is the rota-
tion group. In the case of nickel(II) hexahydrate, since its ligands sit at the vertices of
an octahedron, its symmetry group is accordingly the octahedral group.

The next step is to extract information about the energy levels from these symmetry
groups, using the mathematics of group representations. Recall from Figure 2 that our
task is to determine how the initially five-fold degenerate valence orbitals of Ni2+ re-
arrange into the new energy-level structure of the coordination complex. For both the
initial and final systems, each distinct energy level corresponds to a ‘representation’
Γ of the corresponding symmetry group. Hence, to determine the new splitting and
degeneracy, it suffices to determine how many representations of the octahedral group
occur (corresponding to the number of new energy levels) and their dimensions (corres-
ponding to the degeneracy of each energy level). First, we determine the representation
of the rotation group associated with the nickel ion’s valence orbitals. We then exploit
a precise mathematical relationship characterizing how this initial representation from
the rotation group ‘decomposes’ into a sum of new representations from the octahedral
group. Executing a simple algorithm (demonstrated in Appendix A.3), we find that the
initial representation decomposes into two new representations of dimensions two and
three. This solves the splitting and degeneracy problems: two new energy levels form
that are, respectively, two-fold and three-fold degenerate.

Finally—as in the other two approaches—the group-theoretic approach uses per-
turbation theory to solve the eigenvalue problem. The key difference is that group the-
ory reorganizes the secular equation using properties of the representations. By know-
ing the group representations of the new energy levels, we can diagonalize the perturba-
tion operator, H ′. Diagonalization provides a separate secular equation for each distinct
energy level. This modularizes the eigenvalue problem into a separate sub-problem
for each distinct eigenspace. We learn that we can calculate each distinct eigenvalue
separately, rather than solving a larger secular equation for all of them.

To summarize central intellectual differences between the three approaches, we can
represent the structure of their solution procedures as flowcharts. I represent the ele-
mentary and non-group-theoretic approaches together, since they differ only in the
first step, namely whether or not we first construct a symmetry-based form for the
electrostatic potential. Figure 3 shows how the additional epistemic dependence re-
lations provided by group theory restructure the solution procedure. The dashed ovals
indicate modularization, where we have broken a problem into separately treatable sub-
problems. Group theory shows us how to separate the splitting and degeneracy prob-
lems from the eigenvalue problem, indicated by the first dashed oval in Figure 3. Fur-
thermore, group theory separates the eigenvalue problem into a separate problem for
each distinct eigenvalue, indicated by the second dashed oval. Finally, the flowchart
illustrates how group theory unifies the crystal field theory problem by indicating that
symmetry properties are sufficient for determining the splitting and degeneracy. I ex-
pand on these points in Section 4.3, but first I will clarify how the three approaches pose
a problem for explanationism.
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Elementary and
Non-group-theoretic approaches

(Derive symmetry-based potential)

Compute Matrix Representa-
tion of Perturbation Operator

Compute Roots of Secular Equation

1st-order
Corrections

to
Eigenvalues

Splittings Degeneracies

(a) The parenthetical first step applies
only to the non-group-theoretic approach.

Group-theoretic approach

Determine Groups G0 and G

Representation of
Unperturbed Energy Level

Decompose into (Irredu-
cible) Representations of G

Splittings

Degeneracies

Determine Good
Basis Functions

Compute Diagonal
Matrix Elements

Roots 1 Roots 2 · · ·

(b) The dashed ovals indicate modularization. See the
appendix for a description of irreducible representations.

Figure 3: Schematic step-by-step flowcharts for the three approaches

4.2 A problem for explanationism
With the approaches to crystal field theory before us, I will now show how they pose a
serious challenge to explanationism. To simplify the exposition, I will focus on how the
two symmetry-based approaches explain the splitting and degeneracy (i.e. the energy-
level structure). Similar points arise when comparing these two approaches to the ele-
mentary approach, along with considering how each approach explains the eigenvalues.
My argument involves establishing three premises, which together entail that explan-
ationism provides an incomplete account of the non-pragmatic and objective dimen-
sions of understanding. First, I will show that—on many accounts of explanation—both
symmetry-based approaches provide not only derivations but also explanations of the
relevant phenomena.21 Secondly, I will argue that both approaches reference the same
ontic explanatory information; hence, they do not involve explanatory differences. Fi-
nally, I will argue that the approaches nevertheless provide different understandings of
the crystal field theory phenomena. Hence, explanationism is incorrect: not all intellec-
tual differences stem from corresponding explanatory differences.

Since explanationism is concerned only with explanatory understanding (i.e.
understanding-why), my case study poses a problem only if the compatible formula-

21 Section 6 extends my argument to explanationists who might refuse to grant this premise.
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tions are genuine explanations, rather than mere derivations. However, due to persistent
disagreements about the nature of explanation, it is impossible to conclusively
demonstrate that these approaches are explanatory. The best one can do is motivate
interpreting them as such. To this end, it suffices to note that many established accounts
of explanation would treat these three approaches as explanatory.22 To make just one
representative analysis, I will consider Woodward and Hitchcock’s ([2003a]) ‘manip-
ulationist’ (or ‘interventionist’) account of causal explanation, since it avoids many
well-known problems facing 20th-century accounts of explanation. Manipulationism
recasts explanation as the pursuit of answering ‘what-if-things-had-been-different
questions’: how would the explanandum have differed if one of the explanans had
been changed? For instance, we might wonder how a coordination complex’s energy
levels would have differed if we had changed its symmetry. Answering these what-if
questions requires an ‘explanatory generalization’: a law-like statement characterizing
how the explanandum depends on the explanans, in function–variable form. This lets
us derive the explanandum from input variables characterizing the explanans (such as
initial or boundary conditions). To qualify as an explanatory generalization, a law-like
statement must be invariant under ‘testing interventions’ (Woodward and Hitchcock
[2003b], p. 182). This means that the generalization must continue to hold even as
we intervene on the system of interest, changing its explanans variables within some
nontrivial range.23 Coulomb’s law provides a paradigmatic example, characterizing
how the electrostatic force between two charged bodies depends on their charges and
the distance between them.

Manipulationism straightforwardly renders both symmetry-based approaches—and
also the elementary approach—as genuinely explanatory. In each formulation, the sec-
ular equation (A.1) functions as a suitable explanatory generalization for solving the
eigenvalue problem. The secular equation remains invariant under a wide range of
interventions, including modifying the charges and configuration of the surrounding
ligands. It thereby answers many kinds of what-if-things-had-been-different questions.
In the non-group-theoretic approach, we explain the splitting and degeneracy as a con-
sequence of these eigenvalues. Thus, by causally explaining the eigenvalues, we also
causally explain the energy-level structure. In the group-theoretic approach, a different
explanatory generalization—the character decomposition formula—characterizes how
the splitting and degeneracy depend on the symmetry.24 Since the character decompos-
ition formula is also invariant under a variety of interventions, manipulationism would
interpret this as a genuine explanation too. Hence, both approaches provide not merely
derivations but also causal explanations of the splitting and degeneracy.

Next, we must show that both symmetry-based approaches reference the same ontic
explanatory information. Otherwise, an explanationist could seek to reduce any intel-
lectual differences between the approaches to concomitant explanatory differences. In
both cases, we appeal to the geometric arrangement of the coordination complex, i.e.

22 Although space precludes a fuller discussion, these derivations count as explanatory on Hempel
and Oppenheim’s ([1965 [1948]]) deductive-nomological model, Railton’s ([1981]) ideal explanat-
ory text account, Lewis’s ([1986], pp. 217–21) similar account of causal explanation, and Kitcher’s
([1989]) unificationist account. I briefly discuss the latter in Section 5.2.

23 These testing interventions need not be experimentally feasible or even physically possible (although
they often are); an intervention simply needs to be ‘logically or conceptually possible’ (Woodward
[2003], p. 132).

24 Appendix A.3 describes this formula (Equation A.5) in detail.
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its symmetry, to determine its energy-level structure. The non-group-theoretic approach
uses this structural information to determine the symmetry-based form of the potential
(Equation A.2). This potential is then fed into the secular equation to determine the
quantitative form of the eigenvalues. Although the symmetry-based potential technic-
ally references the charge of the central metal ion, this information could be suppressed
without changing the derivation of the energy-level structure. Likewise, in the group-
theoretic approach, we appeal to the geometric structure of the coordination complex
to determine its abstract symmetry group. Then, using mathematical properties of this
abstract symmetry group—namely, properties of its representations—we determine the
energy-level structure. Hence, in both cases, we appeal to the same ontic explanation,
namely the same state of affairs in the world.25

Finally, it remains to show that the two approaches provide different ways of under-
standing the crystal field theory phenomena, despite relying on the same ontic explanat-
ory information. In the non-group-theoretic approach, we understand the splitting and
degeneracy as a consequence (or feature) of the eigenvalues. In contrast, the group-
theoretic approach provides a way of understanding the splitting and degeneracy as a
consequence of symmetry independently of the quantitative form of the eigenvalues.
Below, I will describe how conceptualism accommodates this intellectual difference in
terms of ‘modularization’, a general kind of epistemic dependence relation. Moreover,
the two approaches differ in how they unify coordination complexes into symmetry-
based families. In the non-group-theoretic approach, we understand the system’s fea-
tures as an instance of a particular instantiation of octahedral symmetry. Whereas in the
group-theoretic approach, our understanding does not depend on the particular instanti-
ation of octahedral symmetry; it applies to any possible instantiation of this symmetry.
These differences in unification amount to differences in understanding.26

To summarize, the two symmetry-based approaches to crystal field theory provide
a counterexample to explanationism. They each explain the splitting and degeneracy
while referencing the same ontic explanatory information. Nevertheless, they provide
objective and non-pragmatic differences in understanding why the phenomenon occurs.
Hence, they show that explanationism is incomplete: it fails to account for all relev-
ant intellectual differences. In the next section, I will demonstrate how conceptualism
easily accommodates the intellectual differences between these two approaches, inter-
preting them in terms of different epistemic dependence relations.

4.3 Illustrating conceptualism
Unlike explanationism, conceptualism accounts for the intellectual differences between
compatible formulations. As an illustration, I will show how conceptualism interprets
the differences between the two symmetry-based approaches. These amount to organ-
izational differences of the same ontic explanatory information, leading to objective
and non-pragmatic differences in understanding. First, I will explain how the notion of
modularization accommodates two key intellectual differences between the approaches.

25 Similarly, when it comes to explaining the eigenvalues, each of the three approaches references
the same explanatory information, including the charge of the central metal ion, the charges of the
ligands, the arrangement of the ligands and metal ion, and the secular equation. This provides a
further counterexample to explanationism.

26 Many philosophers nevertheless view unification as having no bearing on explanation (see Section 5).
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Secondly, I will explain how unification accommodates a remaining intellectual differ-
ence.

When it comes to understanding the splitting and degeneracy, the two symmetry-
based approaches provide different understandings because they appeal to different
EDRs. In the non-group-theoretic approach, we rely on the EDR that knowledge of
the quantitative form of the eigenvalues is sufficient for knowledge of the splitting and
degeneracy. In contrast, the group-theoretic approach modularizes the crystal field the-
ory problem into distinct sub-problems, solving for the splitting and degeneracy without
solving for the eigenvalues. This modularization constitutes the following EDR: know-
ledge of the eigenvalues is not necessary for knowledge of the splitting and degeneracy.
Instead, it is possible to derive the splitting and degeneracy without knowing even the
quantitative form of the eigenvalues. These different EDRs thereby provide different
ways of understanding the splitting and degeneracy, in virtue of how they structure the
derivation. A similar moral about modularization applies to the eigenvalue problem. In
the non-group-theoretic approach, we understand the eigenvalues from a single secular
equation, whereas in the group-theoretic approach, we modularize the larger secular
equation into a set of smaller secular equations, one for each distinct eigenspace. Thus,
we learn that we can understand each distinct eigenspace separately.

A third key intellectual difference between the approaches stems from differences
in how they unify phenomena. Unlike the elementary approach, both symmetry-based
approaches unify the crystal field theory problem into symmetry-based families.27 The
symmetry-based derivations apply not only to a given coordination complex but also
to coordination complexes in the same geometric family. Specifically, they provide
the following kind of epistemic dependence relation: knowledge of the energy-level
structure for one coordination complex in this family suffices for knowledge of the en-
ergy structure for other complexes in this family. Unifying coordination complexes
into symmetry-based families enables us to understand each one as an instance of a
larger class with the same behaviour. Moreover, due to the differences in their re-
spective EDRs, the group-theoretic approach unifies more than the non-group-theoretic
approach. In the latter, a given symmetry-based potential applies only to coordina-
tion complexes that have the same geometric arrangement of ligands around the central
metal ion. For nickel(II) hexahydrate, this is a particular instantiation of octahedral
symmetry, with each ligand at the vertex of an octahedron. In contrast, the relevant
group-theoretic argument applies to any coordination complex with octahedral sym-
metry, independently of how it is instantiated. For instance, the derivation sketched
in Section 4.1 applies just as well to a coordination complex with eight ligands at the
vertices of a cube, rather than an octahedron.28 The group-theoretic approach unifies
more because it tells us that knowledge of the abstract symmetry group suffices for
knowledge of the energy-level structure.

Despite my focus on non-pragmatic differences in understanding, some EDRs are
pragmatically beneficial as well. For agents interested in knowing only the splitting
and degeneracy, modularization provides a beneficial way of obtaining this knowledge

27 The elementary approach cannot unify the energy-level structure because it treats each coordination
complex on a case-by-case basis. This piecemeal approach results from its central EDR, namely
that knowledge of the eigenvalues is sufficient for knowledge of the splitting and degeneracy. To
calculate these eigenvalues, it—like the other two approaches—appeals to the particular strength of
the interaction, a feature specific to each coordination complex.

28 Since cubes are dual to octahedra, they have the same symmetry group.
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without needing to determine further properties of the eigenvalues. Similarly, for agents
who wish to determine the energy-level structure of a class of coordination complexes,
the additional unification provided by group theory hastens this task. In this way, dif-
ferent EDRs can lead to pragmatic benefits, based on agents’ goals. But, unlike many
recent pragmatic accounts of scientific understanding, conceptualism keeps these two
aspects of theory reformulation separate, i.e. the pragmatic benefits vs. the objective
and non-pragmatic differences in understanding. The former depend on the preferences
and goals of agents, whereas the latter are formal properties of a theory’s formulation.29

5 Is Conceptualism Redundant?

Section 4.2 developed a counterexample to explanationism. This counterexample tar-
gets explanationists who view each approach to crystal field theory as explanatory—
an interpretation sanctioned by many accounts of explanation. To rebut my argu-
ment, these explanationists might argue that other non-pragmatic features of scientific
explanation—such as differences in explanatory depth—account for all intellectual dif-
ferences between the approaches. This would render conceptualism’s account of sci-
entific understanding redundant, relative to existing accounts of explanatory differences.

In response, I will argue that conceptualism is not redundant when compared with
leading accounts of explanation that treat the approaches to crystal field theory as ex-
planatory. Because I view them as the most promising theories in their respective tra-
ditions, I will focus on Skow’s ([2016]) account of reasons-why and Woodward and
Hitchcock’s manipulationist account.30 I will argue that both accounts fail to accom-
modate modularization and unification. Additionally, even Kitcher’s ([1989]) unifica-
tionist account of explanation does not accommodate the relevant kind of unification
illustrated by crystal field theory.

5.1 Skow’s account of reasons-why
Skow’s account of reasons-why continues the causal explanation tradition of Railton
and Lewis, while treating grounding as an additional explanatory feature. For a given
concrete event Q, Skow’s theory characterizes a hierarchy of reasons why Q occurred.
At bottom, there are the ‘first-level reasons why Q’. These are always either causes
or grounds. For each reason-why, there might be further reasons why that reason is a
reason, and so on ([2016], p. 124). Nevertheless, when it comes to answering the initial,
bottom-level why-question regarding Q, answering these higher-level why-questions is
optional on Skow’s account. Hence, explanatory arguments that agree on the first-level
reasons-why provide the same explanation. Since the three approaches to crystal field

29 Against my approach, Potochnik ([2015a], p. 1172) argues that it is a mistake to seek a clean-divide
between the pragmatic and the non-pragmatic in the context of explanation and understanding. De-
fending the utility and coherence of this traditional distinction—which explanationists necessarily
grant—lies outside the scope of this paper.

30 Potochnik’s causal pattern account of explanation provides an interesting approach that amalgam-
ates and develops aspects of Woodward’s, Achinstein’s, Strevens’, and van Fraassen’s accounts of
explanation ([2015a], [2017], pp. 127, 134). However, since it relies on pragmatic features of agents
([2015a], pp. 1172–5, [2017], p. 127), it is not amenable to a defender of explanationism. Boku-
lich’s ([2011]) rich account of model explanations modifies Woodward’s account to accommodate
idealization, a complication that I suppress here.
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theory agree on the underlying ontic reasons for the crystal field theory phenomena,
Skow’s account would treat each of them as explanatory.31 Thus, his account falls
within the scope of Section 4.2’s argument against explanationism.

Although Skow’s account has its attractions, it is too circumscribed to capture many
of the intellectually significant differences brought out by symmetry arguments. The
chief utility of Skow’s theory derives from characterizing a hierarchy of reasons-why.
This enables us to see how multiple arguments can agree on a set of lower-level reasons-
why while differing in the higher-level reasons that they articulate. However, Skow’s
theory focuses exclusively on answers to why-questions, and modularization is not an
answer to a why-question. Instead, modularization is a feature of how some explanatory
arguments are organized, based on the epistemic dependence relations they deploy. As
a property of EDRs, modularization characterizes what it ‘suffices to know’ to answer
a certain why-question. Characterizing what-it-takes-to-know something is different in
kind from answering a why-question about a physical phenomenon.

For a different reason, Skow’s account cannot accommodate the symmetry-based
unification discussed in Section 4.3. Skow restricts his account to reasons why for
‘concrete events’, excluding law-like generalizations such as Galileo’s law of freefall
([2016], pp. 27–8, 37). This restriction faces difficulties explaining generalizations,
such as the claim that all coordination complexes with octahedral symmetry display
a particular energy-level structure. To accommodate such generalizations, Skow’s ac-
count must treat them as a conjunction of concrete events, explained by a concatenation
of reasons-why for each system ([2016], p. 134). This sort of aggregative explanation
leaves open that these different systems only coincidentally display the same pattern of
behaviour. Aware of this worry, Skow claims that ‘to show that it is no coincidence
that all the facts in some collection obtain it is enough to find a common reason why
they all obtain’ ([2016], p. 134). In this case, the common reason would presumably
be that all these different coordination complexes have octahedral symmetry. Neverthe-
less, as Lange ([2010], pp. 307, 319–22, [2014], pp. 508–9) notes, there is an important
difference between conjoining explanations (even those sharing a common explainer)
vs. providing a single, unified explanation. Skow’s account cannot afford any special
significance to the single, unified derivation that group representation theory provides.
For indeed, the non-group theoretic symmetry argument provides the same common
reason—octahedral symmetry—but without providing a single unified derivation that
covers all instantiations of this symmetry group. Hence, Skow’s account would have to
view these two approaches as being on a par with respect to unification, although they
are not.

5.2 Woodward and Hitchcock’s manipulationism
Manipulationism also fails to accommodate both modularization and unification. As
described in Section 4.2, manipulationism focuses on answering what-if-things-had-
been-different questions, using possible interventions on the system of interest. How-
ever, just as modularization is not a reason-why, it is also not subsumed under answers
to what-if questions—again because modularization is an organizational feature of ex-

31 Technically, Skow recommends abandoning the explanation-idiom in favor of answers to why-
questions that describe the reasons why an event occurs ([2016], pp. 7–10). Nonetheless, ‘explana-
tion’ remains a convenient catchall for the particular kinds of reasons-why and why-questions per-
tinent to science.
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planatory arguments. Thus, it prima facie lies outside the scope of manipulationism. In
particular, manipulationism neglects a crucial instance of modularization, namely the
epistemic dependence relation that we do not need to know the charges and distances in
order to determine the splitting and degeneracy. The group-theoretic approach provides
us with this EDR by demonstrating that knowledge of symmetry suffices for knowledge
of the energy structure. However, manipulationism cannot accommodate this EDR us-
ing interventions and what-if-things-had-been-different questions. The problem stems
from Woodward and Hitchcock’s stricture that explanations depend solely on ‘invari-
ance under some range of changes in the variables figuring in the [explanatory gener-
alization] itself ’ ([2003a], p. 7). Changes to other variables left out of the explanat-
ory generalization—such as background conditions—do not figure in the explanation.
Crucially, the group-theoretic approach gives us the above EDR by setting aside expli-
cit dependence on the charges and distances, treating them as background conditions.
Hence, when it comes to explaining the splitting and degeneracy, the group-theoretic
approach is silent on interventions that affect these variables.32

Nevertheless, an explanationist might point to manipulationism’s additional account
of explanatory depth as a source of intellectual differences. According to Woodward
and Hitchcock ([2003a], [2003b]), one generalization is—ceteris paribus—deeper than
another if the former incorporates an explanans that the latter treats as a background
condition. Explicitly incorporating background conditions shows how the phenomenon
depends on additional explanans, thereby providing a deeper explanation. For instance,
the group-theoretic character decomposition formula (Equation A.5) explicitly incor-
porates symmetry as an explanans variable. This makes the group-theoretic approach
deeper than the non-group-theoretic approach because the latter fixes symmetry as a
background condition. While this might be a welcome result, Woodward and Hitch-
cock’s account of depth also has counterintuitive consequences. In particular, it seems
to classify the elementary approach as deeper than the group-theoretic approach: the
elementary approach allows for interventions on not only the symmetry but also the
charges and ligand distances, whereas the group-theoretic approach treats these latter
features as background conditions. Yet, the group-theoretic EDRs tell us something im-
portant about crystal field theory that the elementary approach neglects. Independently
of whether either approach is deeper, we need an account of this intellectual difference.
This is what conceptualism provides.

Moreover, Woodward and Hitchcock explicitly disavow that unification matters for
causal explanation. Recall that symmetry arguments unify by focusing on families of
systems that share a set of features or properties, such as the set of all coordination
complexes with octahedral symmetry. Woodward and Hitchcock argue that this kind
of generalization is not crucial for accounts of explanation at all. Instead, they focus
exclusively on a second kind of generalization, based on varying the properties of a par-
ticular system. They characterize this as ‘generality with respect to other possible prop-

32 Woodward does discuss a completely different notion of ‘modularity’ in the context of representing
causal structure by systems of equations ([2003], pp. 48, 327–9). This notion of modularity requires
that each equation represents a distinct causal mechanism, so that we can intervene on one equation
without affecting others. The crystal field theory equations are not modular in this sense because
they are not causally independent of each other.



Epistemic Dependence and Understanding 19

erties of the very object or system that is the focus of explanation’ ([2003b], p. 182).33

Having specified a particular system of interest, one considers varying features that are
properties of that system only. They thus deny any need to interpret unification qua
explanation. As Woodward argues, many kinds of unification involve classificatory
schemes or general mathematical formalisms that are not intrinsically connected with
causal explanations ([2003], pp. 362–4). This illustrates how accounts of explanation
can neglect intellectually significant features such as unification. Not everything that
matters for understanding necessarily has to do with explanation.34

Still, an explanationist might wonder whether Kitcher’s ([1989]) account of unifica-
tion already accommodates the intellectual differences wrought by unification. Perhaps
surprisingly, it does not. According to Kitcher, an argument pattern counts as explanat-
ory provided that it best unifies the phenomena. This is quantified in terms of deriving
the largest number of phenomena relative to the smallest number of assumptions. Only
these unificatory argument patterns earn a place in the ‘explanatory store’ of arguments
that are genuinely explanatory. But, problematically for Kitcher, the explanatory store
is deductively closed, and this prevents it from distinguishing the three approaches to
crystal field theory on unificatory grounds. Recall that the group-theoretic approach
relies on the same perturbation-theoretic argument schema as the other two approaches.
Hence, including the group-theoretic approach within Kitcher’s explanatory store ipso
facto includes the other two approaches. Thus, even though only the group-theoretic
approach maximally unifies crystal field theory, Kitcher’s account does not distinguish
it from the other approaches. This shows that Kitcher’s notion of unification is actually
too weak to adequately characterize the relevant EDRs that I have identified.35

6 Explanatory Exclusion

Short of denying that there are intellectual differences between compatible formula-
tions, only one plausible strategy for defending explanationism remains: an explana-
tionist could deny that the three formulations of crystal field theory are each explan-
atory. If only the group-theoretic approach provides a genuine explanation, then its
intellectual differences would arise from explanatory differences after all. Mounting
this strategy requires adopting an ‘exclusionary account’ of explanation. Compared to
the accounts considered in Section 5, exclusionary accounts posit more restrictive cri-
teria for explanatory relevance. By making the criteria for explanation more demanding,
exclusionary accounts generate an explanatory difference between compatible formula-
tions. These putative explanatory differences can ground corresponding differences in
understanding, thereby precluding counterexamples to explanationism.

To illustrate this strategy, I will consider two exclusionary accounts: Strevens’
([2008]) kairetic account and Lange’s ([2017]) account of distinctively mathematical

33 Likewise, Woodward claims that ‘the explanatory depth of a generalization is connected to its range
of invariance rather than its scope; hence, the unificationist approach focuses on the wrong sort of
generality in explanations’ ([2003], p. 366).

34 See Gijsbers ([2013]) for a similar conclusion. Gijsbers ([2007]) provides a detailed argument for
why unification is not inherently connected with explanation. Similarly, Morrison ([2000]) argues
through numerous case studies that unification is often either in tension with or has nothing to do
with explanation.

35 For additional criticisms of Kitcher’s account of unification, see Barnes ([1992]) and Woodward
([2003], pp. 366–73).
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explanations. Both accounts focus on abstraction of allegedly irrelevant causal details,
thereby excluding many causal influences from counting as explanatorily relevant. We
will see that only the group-theoretic approach satisfies their restrictions, making it the
only genuine explanation for crystal field theory. However, this exclusionary strategy
runs afoul of an important desideratum: we should be able to accommodate the appar-
ent differences in understanding without appealing to epistemically inaccessible ontic
features. Positing more restrictive explanatory relevance relations generates a skeptical
problem because we cannot easily know whether these additional relevance relations
exist or are satisfied.36 My goal here is not to reject these accounts of explanation
per se, but rather to point out that no one should adopt them merely for the sake of
upholding explanationism. Conceptualism provides a more epistemically secure and
parsimonious account of the relevant differences in understanding.

6.1 Strevens’ kairetic account
Strevens’ account focuses on identifying causal ‘difference-makers’, the only causal in-
fluences that are explanatorily relevant. According to his ‘kairetic condition’, a causal
influence counts as a difference-maker provided it remains in at least one maximally
abstract model explaining the phenomenon. To apply this test, we begin with a model
that causally entails the explanandum.37 We then make this causal model as abstract as
possible, replacing specific descriptions of causal influences with increasingly abstract
characterizations, i.e. less exact or specific claims (Strevens [2008], p. 97). Causal influ-
ences that survive this abstraction procedure qualify as difference-makers. On Strevens’
account, only these maximally abstract causal models genuinely explain.38

Applying the kairetic account to the three formulations of crystal field theory, we see
this abstraction procedure in action. Regarding the splitting and degeneracy, the non-
group-theoretic approach abstracts from the particular charges and field strength used
by the elementary approach.39 In their stead, it offers the symmetry-based potential as a
putative causal difference-maker. The group-theoretic approach abstracts further, elim-
inating the particular way that symmetry is instantiated. Assuming that we can always
re-express knowledge of symmetries using group theory, the symmetry-based potential
would be explanatorily irrelevant. What remains are the symmetries themselves—of
the initial metal ion and the resulting coordination complex—as the putative causal
difference-makers for the splitting and degeneracy. Since only the group-theoretic
approach successfully represents these difference-makers, it is the only approach we
have considered that would provide a genuine explanation. It shows that symmetry is a
difference-maker, but not the particular way that symmetry is instantiated. In this way,
Strevens’ kairetic account could ground the intellectual differences between the two

36 Woodward defends a similar epistemic accessibility criterion for explanation ([2003], pp. 23, 179–
81, 308).

37 Causal entailment goes beyond logical entailment by representing an actual causal process that pro-
duces the explanandum (Strevens [2008], pp. 71–2, 93). Potochnik weakens this entailment relation
to better accommodate idealizations ([2017], pp. 155–6).

38 Note that a single application of this kairetic procedure only identifies all of the difference-makers
that appear in a given causal model, rather than all of the difference-makers for a given event.

39 We cannot, however, conclude from this single application of the kairetic procedure that the charges
and field strength are explanatorily irrelevant for the splitting and degeneracy. To do that, we would
have to show that we can abstract them away from any model that causally entails the splitting and
degeneracy.
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symmetry-based approaches in corresponding ontic explanatory differences, thereby
preserving explanationism.

However, the kairetic abstraction procedure for identifying causal difference-
makers faces a skeptical challenge. In general, it is impossible to conclusively prove
that any causal factor is or is not a difference-maker. On the one hand, to show that a
factor is a difference-maker, we must show that it survives under maximal abstraction
within a causal model. Yet, how can we know that no further abstractions in our
model are possible? A scientist taught the non-group-theoretic approach—and with no
knowledge of group theory—might reasonably think that this is a maximally abstract
causal model. On the other hand, to show that a causal factor is not a difference-maker,
we must show that the kairetic procedure eliminates or abstracts away that causal factor
from any and all causal models for the given explanandum (Strevens [2008], pp. 69–70,
87). For instance, to show that the specific eigenvalues are genuinely irrelevant for
explaining the splitting and degeneracy, it is not enough to see how group theory
eliminates them to provide a more abstract causal model. Instead, we would have to
show that any causal model for the splitting and degeneracy lets us abstract away the
specific eigenvalues.

Conceptualism avoids these skeptical worries by analyzing the relevant intellec-
tual differences in terms of epistemic dependence relations, rather than putative causal
difference-makers. It shows that we do not have to consider other possible but cur-
rently unconceived causal models to account for the change in understanding provided
by group theory. Although considering such models would no doubt be illuminating—
since it would amount to considering further reformulations—conceptualism lets us
analyse the intellectual differences between the symmetry-based approaches by consid-
ering those two approaches alone. The hard task of identifying causal difference-makers
may reasonably be hostage to the existence of even more abstract models, but the task
of identifying intellectually significant differences surely is not.

6.2 Lange’s distinctively mathematical explanations
Faced with the limitations of causal accounts of explanation, an explanationist might
try to locate ontic differences between reformulations within the realm of non-causal
explanations. Perhaps what is needed to save explanationism is an account of how
mathematical facts explain physical phenomena. Lange’s theory of distinctively math-
ematical explanations provides one such account. According to Lange, sometimes
causal structure alone cannot account for the inevitability of certain physical phenomena
([2017], pp. 5–6). In these cases, we require a ‘distinctively mathematical explanation’,
wherein a mathematical fact ‘constrains’ the causal structure of reality. Such constraints
possess a higher degree of necessity than the laws or contingent facts that they constrain
(Lange [2013], [2017], p. 10). Recognizing the relevant constraints shows not only why
the explanandum occurred, but also why the explanandum was inevitable—in a modal
sense stronger than nomic inevitability. In such cases, arguments that appeal to causal
structure alone are merely derivations of the relevant phenomenon, rather than explan-
ations.

When it comes to explaining splitting and degeneracy, Lange’s account classifies
only the group-theoretic approach as explanatory. On this interpretation, the charac-
ter decomposition formula (Equation A.5) constrains the possible form of all resulting
energy levels, given initial and final symmetry groups. In other words, it constrains
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all possible causal relations governing the energy-level structure of coordination com-
plexes. For instance, if the force law governing coordination complexes weren’t Cou-
lomb’s law—e.g. if it were an inverse cubic force law instead—the splitting and de-
generacy would remain the same. Although naturally necessary, such force laws would
be interpreted as less necessary than the mathematically necessary facts governing the
representations of symmetry groups. Hence, the group-theoretic approach shows that
the splitting and degeneracy are more necessary than both the relevant force laws and
the resulting eigenvalues. Since the other two approaches cannot explain this difference
in modality, Lange would argue that they are non-explanatory: the causal mechanisms
they reference are explanatorily irrelevant.

However, just like Strevens’ account, Lange’s account faces a skeptical challenge.
His account successfully distinguishes the group-theoretic approach from the other two
approaches only if the world possesses this rich modal structure of mathematical facts
constraining physical facts. Commitment to this kind of graded natural modality is de-
cidedly controversial, in part because it is epistemically inaccessible. We do not have
empirical access to this hierarchy of modal facts. Nevertheless, Lange’s account ap-
plies only if the world possesses this structure. If the world turned out to lack sufficient
modal structure, then distinctively mathematical explanations would devolve into or-
dinary causal explanations.

A further problem arises from this skeptical worry. Worlds that lack Lange’s re-
quisite modal structure are empirically indistinguishable from worlds that possess it.
Hence, the intellectual differences described in Section 4 would be equally apparent in
either kind of world. Regardless of whether or not the world possesses this modal struc-
ture, the three formulations would still provide different understandings of crystal field
theory. Since these differences do not depend on corresponding facts about modality,
we should be able to accommodate them without further metaphysical theorizing. For
instance, to appreciate the central insight that modularization provides, we don’t need
there to be graded modality in the world. Specifically, we don’t need group-theoretic
facts to constrain the causal structure of the world. By supplying epistemic dependence
information, the group-theoretic approach makes a distinctive contribution to our un-
derstanding of crystal field theory, independently of further ontic commitments. Hence,
conceptualism provides a superior strategy for accommodating these intellectual differ-
ences.

Plausibly, any exclusionary account of explanation will face similar problems. For
the basic idea behind this explanationist strategy is to posit additional ontic features
that might ground the intellectual differences between compatible formulations. Since
compatible formulations superficially posit the same states of affairs, any such addi-
tional ontic features will be epistemically less accessible. In contrast, conceptualism
provides an account of these intellectual differences using features that we have easy
epistemic access to—namely, epistemic dependence relations. Determining epistemic
dependence relations is simply a matter of analyzing the epistemic structure of a theory
formulation. Since these differences in EDRs persist independently of whether they are
grounded in further ontic differences, our account of understanding should likewise be
independent of these further differences. Whereas conceptualism satisfies this desider-
atum, the exclusionary strategy canvassed here seemingly does not.
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7 Conclusion

We began with two questions: what accounts for the intellectual differences that com-
patible formulations provide, if not explanatory differences? And in particular, what
makes a symmetry argument intellectually significant in cases where it is not needed to
explain the phenomenon? To answer these questions, I have developed conceptualism
as a framework for analyzing objective and non-pragmatic differences in understanding.
By reformulating theories, we gain epistemic dependence relations that clarify what we
need to know to solve problems. The three formulations of crystal field theory con-
sidered in Section 4 illustrate the dramatic differences that can arise. Group represent-
ation theory radically restructures how we understand the energy levels of coordination
complexes. It does this by modularizing the crystal field theory problem into separately
treatable sub-problems while unifying systems into symmetry-based families.

Sections 5 and 6 considered what seem to be the only two strategies available for
defending explanationism—short of denying that compatible formulations lead to dif-
ferences in understanding. By rebutting these strategies, I have shown that existing
accounts of explanation face the burden of accommodating non-explanatory intellec-
tual differences. One easy way to meet this burden is simply to renounce explanation-
ism and adopt conceptualism. Conceptualism provides a general approach to interpret-
ing the intellectual and methodological significance of reformulations.40 This includes
mathematical reformulations in particular, which have recently sparked debates over
the existence of non-causal explanations. Promisingly, conceptualism lets us interpret
mathematized explanations while skirting seemingly insoluble metaphysical disputes.
It focuses attention away from epistemically inaccessible features of scientific onto-
logy and toward the manifestly accessible epistemic structure of scientific theories (and
problem-solving procedures more generally). Overall, conceptualism provides an at-
tractive account of the intellectual differences that undergird a central and ubiquitous
component of scientific progress, namely, compatible formulations.

A Appendix

A.1 The elementary approach
The elementary approach solves the crystal field theory problem exclusively through
perturbation theory. We begin with an initial Hamiltonian H0 (with known eigenval-
ues and eigenfunctions) that characterizes the energy and dynamics of the unperturbed
system, such as Ni2+. We characterize the perturbation from the six water molecules
by an operator H ′. The sum of these two operators equals an approximate Hamilto-
nian, H, for nickel(II) hexahydrate: H = H0 +H ′. To approximate the eigenvalues of
H, we first calculate the matrix elements of the perturbation operator H ′ by measuring
the electrostatic potential. Calculating these matrix elements requires choosing a basis
for the five unperturbed d-orbitals of Ni2+, such as the five spherical harmonics, Y 2,m

(m∈ {−2,−1,0,1,2}).41 In this basis, we compute all twenty-five elements of the 5×5

40 Moreover, despite its focus on objective and non-pragmatic differences in understanding, conceptu-
alism can be combined with recent pragmatic accounts of understanding for a more complete picture.

41 These functions belong to the separable Hilbert space L2(R3) of square-integrable complex-valued
functions defined over Euclidean three-space R3. For details, see Cornwell ([1984], Appendix B).
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matrix H ′ and use them to solve the secular equation of the perturbation operator:

determinant[H ′−λ I] = 0 (A.1)

where λ I is a constant multiple of the identity matrix. The roots (i.e. zeros) of the sec-
ular equation equal the eigenvalues of H ′, which provide a first-order correction to the
eigenvalues of H0. The number and degeneracy of the distinct eigenvalues corresponds
to the number of new energy levels and their degeneracies.

A.2 The non-group-theoretic approach
The non-group-theoretic approach begins by determining a general form for the elec-
trostatic potential in terms of the symmetry of the coordination complex. Using Cou-
lomb’s law, we express the potential at an arbitrary point P as a sum of six contributing
potentials, one from each of the ligands. After manipulating this expression using Le-
gendre polynomials, we arrive at a tractable formula in Cartesian coordinates x, y, and z.
This constitutes a ‘symmetry-based form of the potential’ (Figgis and Hitchman [2000],
p. 38):

V =
6

∑
i=1

Vi = 6
Ze2

a
+

35Ze2

4a5 (x4 + y4 + z4 − 3
5

r4) (A.2)

Here, Z is the charge of the central metal ion, r is the distance from the point P to the
central metal ion, and a is the distance between each ligand and the central metal ion.

Using equation (A.2) for the crystal field potential V , we then proceed as in the
elementary approach. We calculate the matrix elements of the perturbation operator
H ′ and solve the resulting secular equation for its roots. Since this derivation uses a
symmetry-based expression for the potential, it applies not just to nickel(II) hexahydrate
but to any coordination complex with octahedral symmetry instantiated in the same way.
We find two distinct roots: λ1 =−2

5∆O (three-fold degenerate) and λ2 =
3
5∆O (two-fold

degenerate), expressed in terms of their energy difference ∆O. The existence of two
distinct roots entails that two new energy levels form. Since these roots are three-fold
and two-fold degenerate, so are the resulting energy levels (Dunn et al. [1965], p. 16).

A.3 The group-theoretic approach
To apply group theory, we first identify the symmetry group G0 of the unperturbed
Ni2+ metal ion.42 This is the set of transformations that leave the initial Hamiltonian,
H0, invariant. An unperturbed metal ion possesses spherical symmetry, so H0 is in-
variant under any rotation around any axis passing through the centre of Ni2+. This
uncountably infinite set of rotations constitutes the ‘pure rotation group’ SO(3), (i.e.
the ‘special orthogonal group in three dimensions’).43

Next, we identify the symmetry group G of the final, perturbed state—in this case
nickel(II) hexahydrate. In Figure A.1, Ni2+ sits at the centre of an octahedron, sur-
rounded by a water ligand at each vertex. The symmetry operations that leave this
coordination complex’s Hamiltonian, H, invariant are the twenty-four operations of the

42 A ‘group’ is a set equipped with a closed, invertible, and associative binary operation, containing an
identity element.

43 To simplify the exposition, I neglect inversion transformations in both the initial and final symmetry
groups.
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octahedral group, O. These comprise a variety of 90°,120°, and 180° rotations through
various axes passing through the octahedron’s centre.

120°

180°
x

90°
z

y

Figure A.1: Some symmetry operations of an octahedron

These symmetry transformations form five distinct ‘conjugacy classes’: (1)360°,
(8)120°, (6)180°′, (3)180°, and (6)90°, corresponding to distinct kinds of rotations.
Here, ‘(1)360°’ indicates a conjugacy class consisting of one 360 degree rotation,
namely the identity element of the group.44

To extract information about the energy levels from these symmetry groups, we
move from group theory to group representation theory. This involves constructing
‘matrix representations’ for the symmetry groups of interest.45 To form a matrix rep-
resentation, we map each geometrical symmetry transformation B to an invertible mat-
rix ρ(B). For finite groups, such as the octahedral group, each representation can be
decomposed into a finite number of ‘irreducible representations’.46 Since these irredu-
cible representations cannot be decomposed further, they function as the basic building
blocks of all other representations. For instance, the octahedral group has five irredu-
cible representations, labeled A1,A2,E,T1, and T2.47

Irreducible representations express important symmetry properties of physical sys-
tems. In particular, the irreducible representations of a system’s symmetry group label
the Hamiltonian’s eigenvalues, i.e. the energy of each orbital. This means that each
distinct energy level (each distinct eigenspace) corresponds to an irreducible represent-
ation.48 For example, an irreducible representation ‘Γ(2)

rot ’ of SO(3) labels the five-fold

44 A ‘conjugacy class’ is a collection of operations that is invariant under conjugation: letting A be a
member of the conjugacy class and X any member of the group, the combination XAX−1 is also a
member of the conjugacy class.

45 A matrix representation is a group homomorphism ρ from the group of interest to the group of in-
vertible linear transformations over a vector space V (i.e. the general linear group GL(V )). Requiring
this map to be a ‘group homomorphism’ means that the matrix representatives must compose under
matrix multiplication in the same way as the symmetry transformations do: ρ(AB) = ρ(A)ρ(B).

46 A representation is ‘irreducible’ if there is no proper subspace of basis vectors left invariant by
the transformations of the symmetry group, i.e. the vector space for the representation contains no
smaller, nontrivial invariant subspaces. Otherwise, a representation is ‘reducible’.

47 The capital letters correspond to the dimensionality of the irreducible representation, with ‘A’, ‘E’,
and ‘T’ corresponding to one, two, and three dimensional representations, respectively.

48 In general, each d-dimensional eigenspace provides a basis for a d-dimensional representation of the
Hamiltonian’s symmetry group. In cases of accidental degeneracy, this representation is reducible,
rather than irreducible.



26 Josh Hunt

degenerate d-orbitals of Ni2+. This correspondence between eigenspaces and irredu-
cible representations allows us to derive facts about energy levels by considering rela-
tionships between representations.

For many applications, it is unnecessary to determine explicit matrix representations
for each irreducible representation (illustrating another epistemic dependence relation).
Instead, we can often rely on group characters. For a given irreducible representation,
a ‘character’ is the trace of a matrix from that representation (the ‘trace’ is the sum
of the elements along the principal diagonal). Since matrix traces are invariant under
changes in basis, characters are invariants of an irreducible representation, meaning that
they do not depend on the basis chosen for the representation. Thus, each irreducible
representation has a well-defined set of characters. Furthermore, since the trace of a
matrix is invariant under conjugation, members of the same conjugacy class have the
same trace, and thus the same characters. As a result, we can organize the characters in
a table, where the rows label the irreducible representations and the columns label the
conjugacy classes. The character table for the octahedral group is shown in Table A.1.

Table A.1: Character table for the octahedral group

O (1)360° (8)120° (3)180° (6)180°′ (6)90° Good basis functions
A1 1 1 1 1 1 x2 + y2 + z2

A2 1 1 1 −1 −1
E 2 −1 2 0 0 (2z2 − x2 − y2,x2 − y2)
T1 3 0 −1 −1 1
T2 3 0 −1 1 −1 (xz,yz,xy)
Γ(2)

rot 5 −1 1 1 −1

Affixed to the bottom of Table A.1 are the characters of the representation Γ(2)
rot for

each conjugacy class of the octahedral group. These characters follow from a general
equation for the character of a rotation through α radians for an irreducible representa-
tion characterized by angular momentum ℓ (Cotton [1990], p. 261):

χℓ(α) =
sin[(ℓ+ 1

2)α]

sin[α/2]
(A.3)

For instance, the character of the Γ(2)
rot matrix representatives for 120° rotations is −1,

obtained by substituting ‘2π
3 radians’ for α and ‘2’ for ℓ (since we are dealing with

d-orbitals, which have an orbital angular momentum of two).
When we perturb the spherical symmetry by surrounding the metal ion with ligands,

we break its spherical symmetry into octahedral symmetry. Consequently, irreducible
representations from the octahedral group now label the energy levels of the system.
Therefore, the irreducible representation Γ(2)

rot that labels the initially degenerate energy
levels decomposes into a direct sum of irreducible representations Γr from the octahed-
ral group:

Γ(2)
rot ≈ ∑

r
⊕nrΓr (A.4)

where the multiplicity, nr ∈ N, indicates the number of times that the irreducible rep-
resentation Γr occurs in this decomposition.
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Each distinct Γr in the decomposition (A.4) labels an eigenspace of nickel(II)
hexahydrate. Thus, the number of distinct Γr in the decomposition provides the
splitting, i.e. the number of distinct eigenspaces, and the dimension of Γr equals
the degeneracy of the corresponding eigenspace. Hence, the decomposition of Γ(2)

rot
determines the splitting and degeneracy.

To determine this decomposition, we do not need to know explicit matrix represent-
ations for the irreducible representations. Instead, it suffices to use a ‘character decom-
position formula’:

nr = (1/g)∑
k

Nkχr(T )∗χrot(T ) (A.5)

This equation provides a general relation for decomposing a reducible representation
into a sum of irreducible representations of a finite group (Cornwell [1984], p. 85). As
before, nr denotes the multiplicity of the r-th irreducible representation in the decom-
position of Γ(2)

rot . g denotes the cardinality of the symmetry group of the coordination
complex, in this case the octahedral group (which has 24 elements). The sum is taken
over each conjugacy class (i.e. column) of the character table, indexed by k. Nk denotes
the number of symmetry operations in the k-th conjugacy class. In Table A.1, Nk corres-
ponds to the number preceding the type of symmetry operation at the top of the table.
χr(T )∗ denotes the complex conjugate of the character of a symmetry operation T in
the k-th class for the r-th irreducible representation. Since the characters for the octa-
hedral group are real, these are simply the characters in Table A.1. Likewise, χrot(T )
denotes the character of the same symmetry operation for the representation Γ(2)

rot .
To illustrate the use of Equation A.5, we can compute the multiplicities nr in the

decomposition of the representation Γ(2)
rot . In each equation below, the three factors in

the k-th summand all come from the k-th column of Table A.1. The first number in
each summand is the class size Nk from the top row. The second number is χr(T ) from
the row of the given irreducible representation. The third number is χrot(T ) from the
bottom row of the table.

nA1 =
1

24
[(1)(1)(5)+(8)(1)(−1)+(3)(1)(1)+(6)(1)(1)+(6)(1)(−1)] = 0

nA2 =
1

24
[(1)(1)(5)+(8)(1)(−1)+(3)(1)(1)+(6)(−1)(1)+(6)(−1)(−1)] = 0

nE =
1

24
[(1)(2)(5)+(8)(−1)(−1)+(3)(2)(1)+(6)(0)(1)+(6)(0)(−1)] = 1

(A.6)

nT1 =
1

24
[(1)(3)(5)+(8)(0)(−1)+(3)(−1)(1)+(6)(−1)(1)+(6)(1)(−1)] = 0

nT2 =
1

24
[(1)(3)(5)+(8)(0)(−1)+(3)(−1)(1)+(6)(1)(1)+(6)(−1)(−1)] = 1

This calculation shows that the only irreducible representations that occur in the de-
composition of Γ(2)

rot are E and T2. Thus, the fivefold degenerate d-orbitals split into two
new energy levels, with symmetry type E and T2, respectively. This solves the split-
ting problem. It also solves the degeneracy problem. In Table A.1, the character of the
identity transformation (found in the column under 360°) equals the dimension of the
corresponding irreducible representation. Thus, we see that the E irreducible represent-
ation is two-dimensional, while the T2 irreducible representation is three-dimensional.
Recalling that the dimension of an irreducible representation equals the dimension of
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the corresponding eigenspace, we see that the resulting energy levels are two-fold and
three-fold degenerate, respectively. Finally, through the method of projection operat-
ors, representation theory allows us to determine good basis functions that diagonalize
the perturbation operator, H ′ (Cornwell [1984], pp. 92–8). These are listed in the fi-
nal column of the character table. They help modularize the eigenvalue problem into
separate calculations for each eigenvalue.
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